623. The Colour Isomerism and Structure of Copper Co-ordination Compounds. Part VII.* The Crystal Structure of Bissalicylaldehydatocopper(II).

By A. J. McKinnon, T. N. Waters, and D. Hall.

The crystal structure of bissalicylaldehydatocopper(II) has been determined by two-dimensional projection methods. The two salicyldehyde ligands are individually planar, but the molecule is slightly distorted such that they are not coplanar.

The crystal structure of bissalicylaldiminatocopper(II) ${ }^{\mathbf{1}}$ shows the co-ordination of the metal to be strictly square planar, there being no axial approach of less than $3.85 \AA$. This is an interesting contrast to the situation in the structure of bis- $(N$-methylsalicylaldiminato)copper(II) ${ }^{2}$ where the molecules all lie parallel, the copper atoms forming a chain with $\mathrm{Cu}-\mathrm{Cu}$ separations of $3.33 \AA$. As part of a study of the factors which cause the presence or absence of such axial bonds we have determined the structure of the closely related complex bissalicylaldehydatocopper(II).

* Part VI, J., 1964, 2489.
${ }^{1}$ Stewart and Lingafelter, Acta Cryst., 1959, 12, 842.
${ }^{2}$ Lingafelter, Simmons, Morosin, Scheringer, and Freiburg, Acta Cryst., 1961, 14, 1222.

Experimental

Crystals were obtained by evaporation of a cold chloroform solution as small prisms with $\{101\}$, $\{10 \overline{1}\}$, and $\{111\}$ equally developed. The crystal data were: $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{CuO}_{4}, M=305.7$. monoclinic, $a=8.72 \pm 0.02, b=6.19 \pm 0.02, c=11.26 \pm 0.03 \AA, \beta=104.8^{\circ}, U=587.6 \AA,{ }^{3}$ $D_{\mathrm{m}}=1.71$ by flotation, $Z=2, D_{\mathrm{c}}=1.725$. Space group $P 2_{1} / n$. $\mathrm{Cu}-K_{\alpha}$ radiation, singlecrystal Weissenberg photographs. Data were collected for the $h k 0, h 0 l$, and $0 k l$ zones by the multiple-film method, and intensities etimated by visual comparison with a standard scale. Small equant crystals were used and no absorption corrections made.

Symmetry considerations demand that the copper atom be at a centre of symmetry, and a direct electron-density synthesis could therefore be calculated for the (010) projection. The light-atom positions were clearly defined, and refinement proceeded by difference syntheses

Fig. 1. Electron density projection on (010). Contours are at intervals of le. \AA^{-2}, the lowest being the zero contour.

Fig. 2. Electron density projection on (100). Contours are at intervals of $1 \mathrm{e} . \AA^{-2}$, the lowest being the zero contour.
together with a least-squares procedure for determining the scale constant, the copper temperature factor, and an overall light-atom temperature factor. Seven reflections, of a total of 123 , were corrected for secondary extinction. ${ }^{3}$ When the reliability factor was $0 \cdot 13$ the outstanding features of the difference map suggested distinct anisotropy in the thermal motion of the copper atom, which was corrected accordingly. The final reliability factor, including unobserved reflections, was 0.099 . The electron density map is shown in Fig. 1.

For the (100) projection only planes of the type $k+l$ even are phase-determined by the copper atom. The false mirror plane thereby introduced into a direct electron-density synthesis was partially removed by the inclusion of an arbitrarily phased, high index, high intensity reflection of the type $k+l$ odd and interpretation was not difficult. Subsequent refinement was as above, except that only isotropic temperature factors were used. With 4 out of 86 reflections corrected for extinction the final R factor was $0 \cdot 103$. The electron-density map is shown in Fig. 2. Co-ordinates for the (001) projection were taken from the previous work and were refined as above to an R factor of 0.093 .

Atomic co-ordinates are listed in Table 1. The numbering system, the bond lengths and the bond angles are shown in Fig. 3. Observed structure amplitudes and calculated structure factors are listed in Table 2. All atoms were clearly resolved in at least one projection and the

[^0]standard deviations in atomic positions calculated by Cruickshank's ${ }^{4}$ procedure are thus appropriate. These are $0.022 \AA$ for carbon atoms and $0.016 \AA$ for oxygen. In no case did the co-ordinates obtained from different projections differ by more than 2σ.

Fig. 3. Bond lengths and bond angles.

Fig. 4. Intermolecular approaches between successive molecules along (010).

Table 1.

	Atomic co-ordinates.						
Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c
$\mathrm{Cu} \ldots \ldots \ldots \ldots \ldots$.	0.5000	0.5000	0.5000	$\mathrm{C}(3) \ldots \ldots \ldots \ldots$.	0.3390	0.8787	0.5488
$\mathrm{O}(1) \ldots \ldots \ldots \ldots \ldots$	0.3393	0.7035	0.4819	$\mathrm{C}(4) \ldots \ldots \ldots \ldots$	0.250	1.0346	0.5146
$\mathrm{O}(2) \ldots \ldots \ldots \ldots$.	0.6280	0.6184	0.6572	$\mathrm{C}(5) \ldots \ldots \ldots \ldots$.	0.2135	1.2064	0.5825
$\mathrm{C}(1) \ldots \ldots \ldots \ldots \ldots$	0.5950	0.7960	0.6995	$\mathrm{C}(6) \ldots \ldots \ldots \ldots$	0.3380	1.2580	0.6887
$\mathrm{C}(2) \ldots \ldots \ldots \ldots$.	0.4630	0.9284	0.6586	$\mathrm{C}(7) \ldots \ldots \ldots \ldots$	0.4573	1.1140	0.7270

Discussion

The molecules are steeply inclined to the (010) plane with the result that successive molecules along b make a large number of close van der Waals's contacts, as shown in Fig. 4. The axial separation from the copper atom (perpendicular to the co-ordination square) to the aromatic ring of the next molecule is $3 \cdot 21 \AA$. The mean plane through the molecule was calculated by the method of Schomaker et al. ${ }^{5}$ as $x+0.5662 y-1.332 z=0$ (coordinates expressed in \AA), and individual atomic displacements from this plane are listed in Table 3. Several of these, viz., for atoms $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(3)$, and $\mathrm{C}(6)$, are highly significant in terms of the standard deviations, and the molecule must be distorted from the expected overall planarity. The mean plane through the benzene ring alone is $x+0.5121 y-$ $1 \cdot 3522 z+0.3275=0$, and displacements from this are also listed in Table 3. None of these is significant for the light atoms, and it appears that the individual ligands are effectively planar, but that a bend in the molecule occurs at the points of co-ordination. The planes of the two benzene rings are separated by $0.39 \AA$. Chemically similar molecules, e.g., bis-(N-methylsalicylaldiminato)copper(II), are perfectly planar, and the distortion of the molecule in the present structure may indicate a weak attraction between the copper atom and the adjacent aromatic ring. It has similarly been observed that in

[^1]Table 2.
Observed structure amplitudes and calculated structure factors $(\times 10)$.

Planes $h 0 l$			Plane	F_{0}	F_{c}	Plane	F_{0}	F_{c}	Plane	F_{0}	$F_{\text {c }}$	Plane	F_{0}	F_{c}
Plane	$F_{\text {o }}$	F_{0}	501	354	321	110]	96	127	046	204	208	260	103	108
002	561*	552	$\overline{1}$	93	58	$\overline{3}$	117	119	7	69	71	7	59	-61
4	587*	606	3	381	349	5	86	77	8	147	124			-
6	$598 *$	640	3	316	330				9	24	30			
8	240	214	5	202	224				10	187	209	310	40	44
10	211	213	5	313	290		lanes		11	64	88	2	182	138
12	187	207	$\frac{7}{7}$	259	209	002	533	536	12	63	74	3.	375 119	392 92
14	150	46	7 9	257	218	4	618	600				5	140	136
			$\frac{9}{9}$	243	243	6	602 *	612	051	209	204	6	143	136 7
101	$1210{ }^{*}$	1150	11	58	124	8	180	131	2	79	-55	7	140	137
3	206	161	$\frac{11}{11}$	98	129	10	155	147	3	246	259		140	
3	206	-187	$\frac{1}{17}$	134 0	129 49	12	132	136	4	71	-20			
5	833*	833	10	0	49	14	72	88	5	188	190	400	94	96
5	467*	501							6	188	-44	1	250	255
$\frac{7}{7}$	341	302	600	382	383	011	138	149	7	139	132	2	452	466
$\overline{7}$	329	346	$\frac{2}{5}$	442	420	- 2	138 31	141	8	63	-36	3	17 248	-20
9	155	124	$\overline{2}$	273	269	3	$\stackrel{316}{ }$	310	9	94	-105	4	248	249
$\overline{9}$	281	274	$\frac{4}{4}$	137	140	4	200	310 -200	10	0	108 8	5	61	-49
11	114	155	4	466	502	5	252	- 223	11	24	28	${ }_{7}$	119	138
$1 T$	174	170	$\frac{6}{6}$	232	229	6	138	-118				7	29	33
13	134	173	6	309	297	7	324	-118						
$\overline{1} \overline{3}$	173	162	$\frac{8}{8}$	224 119	210 100	8	78 78	$\begin{array}{r}85 \\ \hline\end{array}$	060	73 102	82 -99	510	272	288
			119	119 90	100 96	9	186	149	2	207	198	2	140	-132
200	203	248	12	190	173	10	61	-45	8	84	1989	3	211	197
$\frac{2}{2}$	242	-268	12	190	173	11	153	150	4	153	152	4	13	-24
2	64	-1				12	72	-55	5	68	67	5	279	273
4	277	274	701	503	547	13	77	75	6	86	77	6	92	80
$\overline{4}$	240	256	I	211	213	14	23	-36	7	41	77 -29	7	37	43
6	352	331	3	263	225				8	$\xrightarrow{4106}$	-109			
$\overline{6}$	256	256	$\overline{3}$	332	312				8	106 26	109 -15			
8	175	189	5	166	179	020	75	84	9	26	-15	600	362	372
$\frac{8}{8}$	333	352	$\overline{5}$	291	282	1	105	134				1	114	-108
10	133	138	7	249	234	2	371 *	422	071	89	92	2	156	137
10	204	181	$\overline{7}$	154	164	3	108	-102	2	35	-23	3	48	-31
12	81	134	$\overline{9}$	139	137	4	233	254	3	0	8	4	142	137
12	195	184	IT	194	182	5	128	-89	4	51	-63	5	40	-59
14	155	174	13	106	131	6	257	266 -111	5	50	54	6	85	75
						7	113	-111	6	0	8			
301	41	27	800	180	153	8	258	282 -3				710	189	172
$\bar{\square}$	252	275	$\frac{2}{2}$	283	272	10	64	-32	080	72	88	2	29	-33
3	240	183	$\frac{\square}{4}$	0	38	11	36	-41	1	12	11	3	105	103
$\overline{3}$	415*	495	4	50	97	12	114	-4105	1	12	11	4	48	28
5	238	203	4	195	160	13	0	11				$\tilde{\square}$	99	88
$\overline{5}$	137	107	6	218	222	13	0			nes h		6	39	26
7	151	160	6	65	103									
$\overline{7}$	263	276	8	170	166	031	167	192	020	85	71 200			
9	279	292	10	125	116	2	282	307	4	246	209	800	138	135
$\overline{9}$	265	258	$\overline{1}$	102	102	3	187	191	6	75	87	1	80	-19
11	133	164				4	17	5	8	75	101	3	153 0	157 -11
$1 \overline{1}$	226	211	901	97	97	5	155	131				4	0 77	-11
T $\overline{3}$	196	212	$\overline{1}$	38	12	6	56	-7	110	290	289	4 5	27	717
			3	32	72	7	29	-31	2	62	-12	5	22	17
400	123	132	$\overline{3}$	130	135	8	160	142	3	358	340			
2	377	407	5	85	110	9	127	140	4	184	169	910	180	196
$\overline{2}$	264	310	$\overline{5}$	77	76	10	82	-79	5	281	255	2	70	56
4	370	391	7	130	125	11	75	76	6	169	-172	3	97	106
4	214	224	9	115	110	12	20	-:	7	119	120	4	0	9
6	169	132	$\overline{1}$	68	65	13	26	55	8	9	6			
$\overline{6}$	190	120										1000	53	51
$\frac{8}{8}$	299	276	1000	78	92	040	209	199	200	228	233	1	18	-1
8	261	243	2	64	111	1	35	22	1	103	82	2	79	91
10	232	237	$\overline{2}$	151	164	2	306	326	2	489	521	3	28	26
10	135	134	$\frac{4}{4}$	123	116	3	87	-79	3	37	-15			
T2	195	193	$\overline{6}$	96	82	4	278	282	4	112	97	* denot	corr	
14	54	27	$\overline{8}$	96	101	5	70	65	5	0	-6	or exti	tion.	

Table 3.
Deviations from the mean planes through (i) the molecule and (ii) the benzene ring.

Atom		Deviation (\AA)		Atom		Deviation (\AA)	
		(i)	(ii)			(i)	(ii)
Cu		0	$+0 \cdot 193$	C(3)		-0.067	-0.002
O(1)		-0.129	$+0.005$	C(4)		-0.010	$+0.011$
$\mathrm{O}(2)$		-0.084	$+0.052$	C(5)		$+0.020$	-0.021
C(1)		-0.019	$+0.056$	C(6)		$+0.090$	$+0.022$
C(2)		-0.034	$+0.004$	C(7)		$+0.013$	-0.015

the crystal structure of bisacetylacetonatocopper(II), ${ }^{6}$ the copper atom makes an axial approach of $3.09 \AA$ to a neighbouring conjugated ring, and this approach is associated
${ }^{6}$ Dahl, Personal communication quoted by Piper and Belford, Mol. Physics, 1962, 5, 169.
with a distortion from the expected planarity of the molecule. It has been suggested ${ }^{7}$ that such weak attractions may be examples of polarisation bonds, the copper atom acting as acceptor and the π-bond system as donor.

While this Paper was being prepared a preliminary Note appeared ${ }^{8}$ describing an independent investigation of the same structure. The results appear to be in agreement but no mention is made of the above molecular distortion.

Calculations involved in this work were performed on SILLIAC, University of Sydney, and the IBM 1620 at the University of Canterbury.

We thank Dr. H. Freeman and Dr. D. van der Helm for the programmes used, and Dr. J. G. Sime, Dr. B. R. Penfold, and Mr. W. T. Robinson for assistance with the computations; also Professor D. R. Llewellyn for his interest, and the Research Committee of the New Zealand University Grants Committee for financial assistance.

University of Auckland, New Zealand. [Received, September 16th, 1963.]
${ }^{7}$ Hall, Rae and Waters, J., 1963, 5897.
${ }^{8}$ Bevan, McConnell; and Graddon, Nature, 1963, 199, 373.

[^0]: ${ }^{3}$ Pinnock, Taylor, and Lipson, Acta Cryst., 1956, 9, 175.

[^1]: ${ }^{4}$ Cruickshank, Acta Cryst., 1949, 2, 65.
 ${ }^{5}$ Schomaker, Waser, Marsh, and Bergman, Acta Cryst., 1959, 12, 600.

